GPU Implementation of Spatial-Spectral Preprocessing for Hyperspectral Unmixing
نویسندگان
چکیده
Spectral unmixing pursues the identification of spectrally pure constituents, called endmembers, and their corresponding abundances in each pixel of a hyperspectral image. Most unmixing techniques have focused on the exploitation of spectral information alone. Recently, some techniques have been developed to take advantage of the complementary information provided by the spatial correlation of the pixels in the image. Computational complexity represents a major problem in these spatial–spectral techniques, as hyperspectral images contain very rich information in both the spatial and spectral domains. In this letter, we develop a computationally efficient implementation of a spatial–spectral processing algorithm that has been successfully applied prior to the spectral unmixing of the hyperspectral data. Our implementation has been optimized for the commodity graphics processing units (GPUs) and is evaluated (using both synthetic and real data) using different GPU architectures. Significant speedups can be achieved when processing hyperspectral images of different sizes. This allows for the inclusion of the proposed parallel preprocessing module in a full hyperspectral unmixing chain able to operate in real time.
منابع مشابه
An Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data
The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملجداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
متن کاملAn Efficient Technique for Hyperspectral Endmember Extraction based on SE
Hyperspectral Endmember extraction of a set of accurateendmembers is critical for the proper unmixing of Hyperspectral image. Several preprocessing algorithms such as spatial preprocessing (SPP), region based spatial preprocessing (RBSPP), and spatial spectral preprocessing (SSPP) have been developed for the extraction of endmembers. These algorithms require complex operations and huge computat...
متن کاملکاهش ابعاد دادههای ابرطیفی به منظور افزایش جداییپذیری کلاسها و حفظ ساختار داده
Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Geosci. Remote Sensing Lett.
دوره 13 شماره
صفحات -
تاریخ انتشار 2016